

Open-Minded

Selecting Appropriate Process Models for IT Projects: Towards a Tool-Supported Decision Approach

by Michael Harr & Sarah Seufert

Research Paper

WI 2023 Conference in Paderborn – 21.09.2023

Agenda

- 1. Motivation
- 2. Foundations
- 3. Method
- 4. Results
- 5. Conclusion

WI 2023 Conference in Paderborn – 21.09.2023

Navigating Complex & Changing Environments

- Digitization leading to IT projects becoming increasingly complex
- Research and Practice acknowledge the need for systematic process models
- Process models are "axiomatically appropriate" (Fitzgerald, 1998, p. 317)
- Established and widespread use in practice

Most IT Projects Fail

of software projects are delivered as planned Average IT project overruns the budget by

27 %

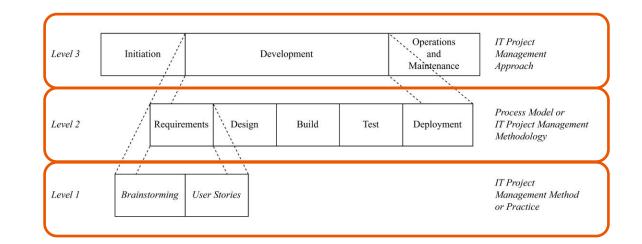
1/6 IT projects overruns the budget by

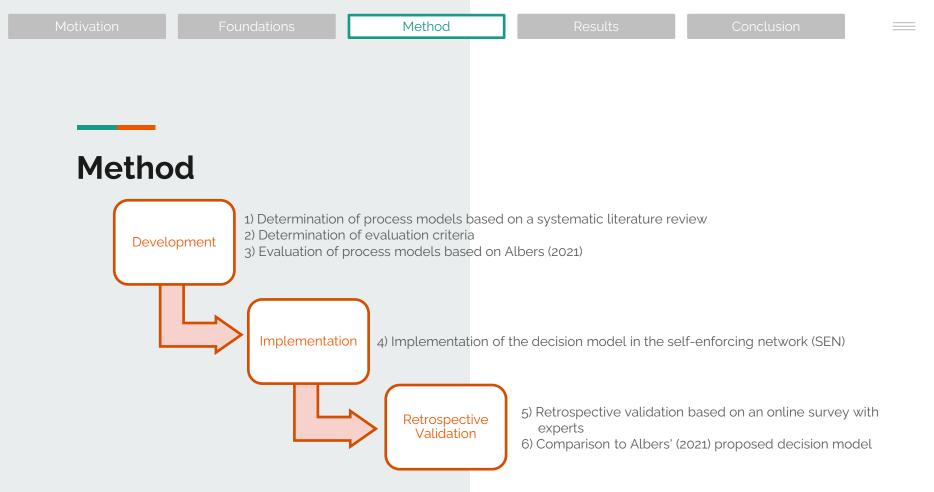
200 % and the timeframe by

70 %

Lost in Translation Gap

- Advice of consultants, seeking to sell their own approaches
- Compliance with certificates
- Retention of the status quo
- Theoretical approaches without practical implementation


RQ: How can the decision-making capabilities of organizations be enhanced for the selection and evaluation of process models for IT projects?


Contingency Theory

- Survival and effectiveness are tied to organization's alignment with specific contexts
- IT projects are contingent upon their type and specific characteristics

Delimitation of Ambiguous Terms

Decision Field

Our model includes

17 process models as

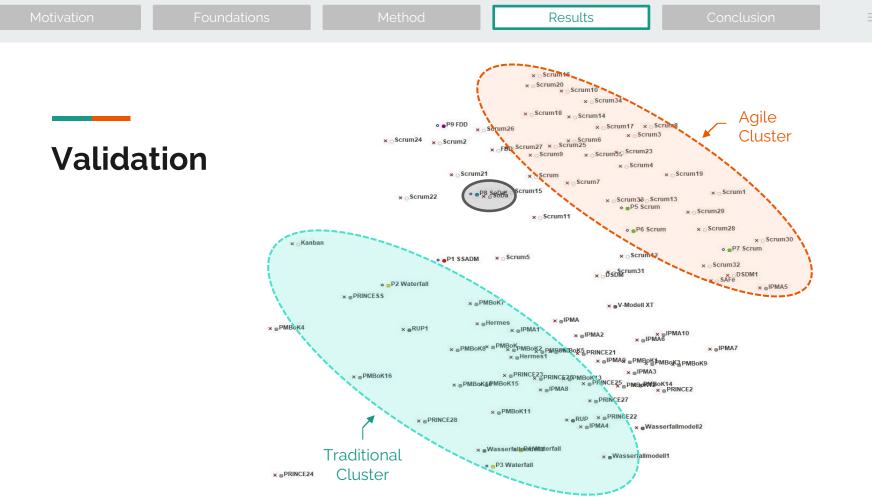
alternatives in the decision field.

5 traditional

9 agile

2 hybrid

Our model includes


81

process model characteristics from five contingency dimensions ordered in four topics.

15 project-specific
37 project management-specific
17 project team-specific
12 organizational

Implement ation

Criteria c _n	Attribute name	cvf _a	Author(s)
<i>C</i> ₆	Novelty / Market uncertainty	2.0	(Ratbe et al., 1999;
<i>c</i> ₁₃	(IT project) complexity	2.0	Ahimbisibwe et al.,
<i>c</i> ₁₅	(IT product) complexity	2.0	2017; Butler et al.,
<i>C</i> ₃₉	Requirements volatility	2.0	2020; Ciric et al.,
			2022)
<i>c</i> ₃₈	Time of requirements elicitation	1.5	(Beck et al., 2001;
<i>C</i> ₄₄	Stakeholder integration	1.5	Fowler & Highsmith,
C ₅₉	Team's hierarchical task organi-	1.5	2001)
	zation		
<i>c</i> ₆₁	Team communication culture	1.5	
<i>C</i> ₆₂	Reflection on collaboration	1.5	
<i>C</i> ₆₄	Willingsness to learn and change	1.5	
<i>C</i> ₆₇	Trust within the team	1.5	

Conclusion & Limitations

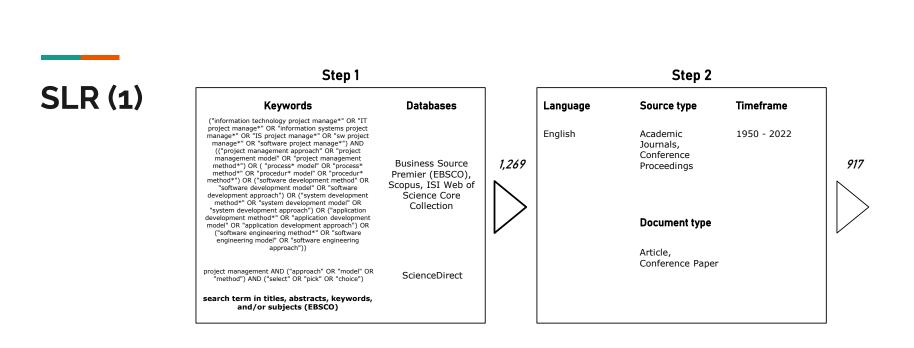
- Self-reported, subjective online questionnaire
- Limited sample size (9 IT projects)
- Assumption that successful IT projects also adopted appropriate process models

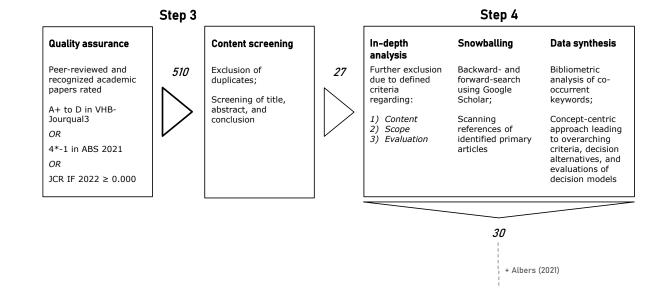
- AI- and ML-based weighted decision model based on previous work by Albers (2021)
- Easy applicability for organizations
- We add to the ongoing discourse on situational method engineering and contingency theory
- Address the dynamic nature of process models, adapting to volatile contextual factors

Literature

- Ahimbisibwe, A., Daellenbach, U. & Cavana, R.Y. (2017), 'Empirical comparison of traditional plan-based and agile methodologies: Critical success factors for outsourced software development projects from vendors' perspective', Journal of Enterprise Information Management, 30(3), pp. 400–453.
- Albers, C. (2021), 'Bewertung und Auswahl von Vorgehensmodellen im IT-Projektmanagement– Ein Ansatz für die Unternehmenspraxis', in J. Klüver and C. Klüver (eds.) Neue Algorithmen für praktische Probleme. Wiesbaden: Springer Fachmedien, pp. 21–38.
- Alexander, L.C. & Davis, A.M. (1991), 'Criteria for selecting software process models', in Proceedings of the Fifteenth Annual International Computer Software & Applications Conference. Tokyo, Japan: IEEE Computer Society Press, pp. 521–528.
- Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J. & Thomas, D. (2001), Manifesto for agile software development. https://agilemanifesto.org/iso/en/manifesto.html. Accessed: 05/10/2023.
- Butler, C.W., Vijayasarathy, L.R. & Roberts, N. (2020), 'Managing Software Development Projects for Success: Aligning Plan- and Agility-Based Approaches to Project Complexity and Project Dynamism', Project Management Journal, 51(3), pp. 262–277.
- Ciric, D., Lalic, B., Delić, M., Gracanin, D. & Stefanovic, D. (2022), 'How project management approach impact project success? From traditional to agile', International Journal of Managing Projects in Business, 15(3), pp. 494–521.

Literature


- Drazin, R. & de Ven, A.H. Van (1985), 'Alternative Forms of Fit in Contingency Theory', Administrative Science Quarterly, 30(4), pp. 514– 539.
- **Fitzgerald, B**. (1998), 'An empirical investigation into the adoption of systems development methodologies', Information & Management, 34(6), pp. 317–328.
- Fowler, M. & Highsmith, J. (2001), 'The Agile Manifesto', Software Development, 9, pp. 28–32.
- Howell, D., Windahl, C. & Seidel, R. (2010), 'A project contingency framework based on uncertainty and its consequences', International Journal of Project Management, 28(3), pp. 256–264.
- PricewaterhouseCoopers (2014), Project Management: Improving performance, reducing risk.
 https://www.pwc.com/jg/en/publications/ned-presentation-project-management.pdf. Accessed: 05/01/2023.
- Ratbe, D., King, W.R. & Kim, Y.G. (1999), 'The fit between project characteristics and application development methodologies: A contingency approach', Journal of Computer Information Systems, 40(2), pp. 26–33.
- The Standish Group (2010), Chaos Report. Boston.


SLR – Pilot Search

Main Term	Synonyms/Homonyms	Exemplary Author(s)						
IT Project Manage- ment	Information Systems Project Man- agement OR IS Project Management	(Mahaney and Lederer 2003, 2010; Mastrogiacomo et al. 2014; Botchkarev and Finnigan 2015)						
	Software Project Management OR SW Project Management	(Boehm and Ross 1989; Jurison 1999; Azenha et al. 2021; Saleem et al. 2021)						
Model	Methodology	(Wells 2012; Babenko et al. 2019; Jayakody and Wijayanayake 2021)						
	Method	(Cervone 2011; Tripp et al. 2016; Cooper and Sommer 2018; Tripp and Armstrong 2018)						
	Approach	(Lee and Xia 2010; Gemino et al. 2021; Ciric et al. 2022)						
Process Model	Procedural Model OR Procedure Model	(Fettke et al. 2002; Bauer et al. 2019; El Mariouli and Laassiri 2019; Thesing et al. 2021)						
	Software Development Model OR Software Development Method OR Software Development Approach OR Software Development Methodol- ogy	(Selby et al. 1987; Moløkken- Østvold and Jørgensen 2005; Brhel et al. 2015; Bilgaiyan et al. 2016; Vijayasarathy and Butler 2016; Bakhtouchi and Rahmouni 2018)						
	Systems Development Model OR Systems Development Method OR Systems Development Approach OR Systems Development Methodology	(Fitzgerald 1996, 1997, 1998; Iivari and Huisman 2007; Karlsson and Pär 2009; Baghizadeh et al. 2020; Lagstedt et al. 2022)						
	Software Engineering Model OR Software Engineering Method OR Software Engineering Approach OR Software Engineering Methodology	(Mohammed et al. 2010; Gu and Lago 2011; Bavota et al. 2012; Fitsilis and Lekatos 2017)						
	Project Management Model OR Project Management Method OR Project Management Approach OR Project Management Methodology	(Mohan and Ahlemann 2010; Wells 2012; Gonzalez 2014; Joslin and Müller 2015; Markopoulos 2020; Ciric et al. 2022)						

Final sample

SLR (2)

Motivation	Foundations	Method protetyping production software angin programming		Conclusion	
Results VOSv	agile project managem succ software development project	ne <mark>th</mark> odology	process measures tware development methodology selection life cycle model methodology	software project managem söftware process model new product developr	
	traditional <mark>m</mark> ethodolog hybrid m e	project management methodology	decision making and		

SLR **Results** Decision Models (lvl. 3)

Hierar- chy	Ap- proach	т	н	Α
<i>Level 3:</i> IT project manage- ment ap- proach	т	(Turner and Cochrane 1993; Payne and Turner 1999)		
	н			, , ,,
	A	(Little 2005; Shenhar and Dvir 2007b; Howell et al. 2010; Špundak 2012; Kuchta and Skowron 2016; Ahimbisibwe et al. 2017; Kokkeler 2018; Butler et al. 2020)		(Austin and Devin 2009; Young et al. 2016)
	All ap- proaches (T, H, A)	(Wysocki 2019; Azenha et al. 2021;	Ciric et al. 20	22; Lagstedt et al. 2022)

SLR Results Decision Models (lvl. 2)

Hierar- chy	Process Models	т	н	A
Level 2:			- 	
Process models	т	(Song et al. 2016)	 	
	н	(Carvalho et al. 2011)		1
	A	(Davis et al. 1988; Alexander and Davis 1991; Ratbe et al. 1999; Charvat 2003; Kettunen and Laanti 2005; Jain and Chandrasekaran 2009; Hicdurmaz 2012; Moyo et al. 2013; Dawson and Dawson 2014)	I I	
	All pro- cess models (T, H, A)	(Albers 2021)		

Decision Field – Process Models

		-			
Tradi	tional approach	Hybri	id approach	Agile	approach
pm_1	Build & Fix	pm_{16}	AUP	pm_7	Crystal
pm_2	RUP	pm_{17}	SoDa	pm_8	DSDM
pm_3	Spiral model			pm_9	FDD
pm_4	SSADM			pm_{10}	TDD
pm_5	V-Model XT			pm_{11}	Kanban
pm_6	Waterfall model			pm_{12}	OEP
				pm_{13}	SAFe
				pm_{14}	Scrum
				pm_{15}	ScrumBan

Standards and frameworks used in the decision model but not in the conducted survey

pm_{18}	HERMES
pm_{19}	РМВоК
pm_{20}	Prince 2
pm_{21}	PRINCESS
pm_{22}	IPMA

Decision Field – Criteria

ІТ рі	roject criteria	-	project nagement criteria	IT pı crite	roject team ria	Organizational criteria				
c_1	Time limitation	c ₁₆	Total PP coverage	c ₅₃	Team location	c ₇₀	Organizational hi- erarchies			
c_2	Timeframe	c ₁₇	Coverage PP initiation	C ₅₄	Virtual teams	c ₇₁	Unplanned addi- tional work			
c3	Budget profile	c ₁₈	Coverage PP setting up project infrastructure	C ₅₅	Team diversity	c_{72}	Management style organization			
c4	Budget size	c ₁₉	Coverage PP planning	c ₅₆	Team size	c ₇₃	Qualification pro- grams incentives			
c5	Uniqueness	c ₂₀	Coverage PP closing	c ₅₇	Team's process model experience	c ₇₄	Monetary incen- tives			
c ₆	Novelty / Market uncertainty	c ₂₁	Coverage PP planning instruments	C ₅₈	Certifications	c ₇₅	Company-wide default process model			
c ₇	Goal uncertainty	c_{22}	CS risk management	C 59	Team's hierarchical task organization	c ₇₆	CS metrics CPI			
c ₈	Monetary benefit	c ₂₈	CS incident manage- ment	c ₆₀	Team's task alloca- tion type	c ₇₇	CS metrics CMMI			
C9	Demarcation project organiza- tion	c ₂₄	CS error management	c ₆₁	Team communica- tion culture	c ₇₈	CS metrics auto- motive SPICE (or MAN.3)			

Implement ation – Raw Data

± × ± ±	>	1			1																					Zeiler	filtern	
🐻 Rohdaten 🧃	🛛 Norma	lisiert	1	Sewicht	et																							
Objekt Name	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR1	PR1	PR1	PR1	PR1	PR1	PM0	PM0	PM0.										
Build and Fix	0.00	0,10	0.00	0,10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,10	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hermes	1,00	0,70	1,00	0,40	1.00	0,50	1.00	0,00	0,50	1.00	1,00	1,00	0,70	0,40	1,00	1,00	1,00	0,75	1,00	1,00	0,25	1,00	0,00	0,00	0,75	1,00	0.75	0,50
Hermes1	1.00	0.40	1.00	0.70	1.00	0.50	1.00	0.00	0.50	1.00	1.00	1.00	0.50	0.40	0.75	1.00	1.00	0.75	1.00	1.00	0.75	1.00	0.75	0.75	0.75	1.00	1.00	0.75
IPMA	1,00	0,40	1,00	0,40	0.00	0,50	1.00	0,00	0,75	1.00	0,30	1,00	0,50	0,40	0,75	0,50	0.75	0.25	0,50	0.75	0,75	1.00	0,75	0,50	0.75	0.75	0.75	0,75
IPMA1	0,00	0,70	0,00	0,70	1,00	0,50	1,00	0,00	0,50	1,00	0,30	1,00	0,50	0,40	0,50	0,75	1,00	0,50	0,75	1,00	0,75	1,00	0,75	0,50	0,75	0,75	0,75	0,75
IPMA2	1,00	0,40	1,00	0,40	0,00	0,50	1,00	0,00	1,00	1,00	0,30	1,00	0,50	0,60	0,75	0,75	1,00	1,00	1,00	1,00	0,75	0,75	0,75	0,50	0,25	0,75	0,75	0,25
IPMA3	1,00	0,70	1,00	0,40	0,00	0,80	0,75	0,00	0,50	1,00	0,30	1,00	0,70	0,40	0,25	1,00	0,75	0,75	1,00	0,75	1,00	0,75	0,75	0,75	0,75	1,00	0,75	0,75
IPMA4	1,00	0,70	1,00	0,70	1,00	0,50	1,00	0,00	0,75	1,00	0,30	1,00	0,70	0,60	0,50	1,00	1,00	1,00	1,00	0,75	0,75	1,00	0,75	0,75	1,00	1,00	0,75	1,00
IPMA5	1,00	0,70	1,00	0,40	1,00	1,00	0,75	0,00	0,50	1,00	0,30	1,00	1,00	1,00	0,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
IPMA6	1,00	0,40	1,00	0,40	1,00	0,50	1,00	0,00	0,50	1,00	0,30	1,00	0,70	0,60	0,50	1,00	1,00	0,75	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
IPMA7	1,00	0,70	1,00	0,70	0.00	0,80	1,00	1,00	1,00	1,00	0,30	1,00	0,70	0,60	0,75	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
IPMA8	1,00	0,40	1,00	0,70	0,00	0,50	1,00	0,00	0,75	1,00	0,30	1,00	0,50	0,60	0,75	0,75	0,75	0,50	1,00	1,00	0,25	1,00	0,50	0,50	0,75	0,75	0,75	0,75
IPMA9	1,00	0,70	1,00	0,70	1,00	0,80	1,00	0,00	0,75	1,00	0,30	1,00	0,70	0,40	0,25	1,00	1,00	0,75	1,00	1,00	1,00	1,00	0,75	0,50	1,00	1,00	1,00	1,00
IPMA10	1,00	0,70	0,00	0,70	1,00	0,50	0,75	0,00	0,75	1,00	0,30	1,00	0,70	0,60	0,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PMBoK	1,00	0,70	1,00	0,40	1,00	0,50	1,00	0,00	0,75	1,00	0,30	1,00	0,50	0,60	0,50	1,00	0,75	0,75	1,00	0,75	0,50	1,00	0,50	0,50	0,75	0,75	0,50	0,25
PMBoK1	1,00	0,40	1,00	0,70	1,00	0,50	0,75	0,00	0,50	1,00	0,30	1,00	1,00	0,60	0,50	0,75	0,75	0,50	1,00	1,00	0,50	0,75	0,75	0,75	0,75	0,75	0,50	0,50
PMBoK2	1,00	1,00	1,00	1,00	0,00	0,50	0,75	0,00	0,50	1,00	0,30	1,00	0,70	1,00	0,50	1,00	1,00	1,00	1,00	1,00	0,50	0,50	0,50	0,50	0,50	1,00	1,00	0,50
PMBoK3	1,00	0,70	1,00	0,70	0,00	0,50	1,00	0,00	0,75	1,00	0,30	1,00	0,70	0,40	0,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,75	0,75	0,75
PMBoK4	1,00	0,70	0,00	0,40	0,00	0,50	0,50	1,00	0,75	0,00	0,30	1,00	0,50	0,40	0,50	0,75	0,75	0,00	0,75	0,75	1,00	0,75	0,75	0,00	0,75	0,75	0,25	0,75
PMBoK5	1,00	0,40	1,00	0,20	1,00	0,50	1,00	1,00	1,00	1,00	1,00	1,00	0,70	0,60	0,50	1,00	0,75	0,75	1,00	1,00	0,75	1,00	0,75	0,50	1,00	0,75	0,25	0,50
PMBoK6	1,00	0,40	1,00	0,40	1,00	0,50	1,00	0,00	0,75	1,00	0,30	1,00	0,50	0,60	0,50	1,00	0,75	0,25	0,50	0,50	0,75	0,75	0,50	0,75	1,00	0,75	0,50	0,25
PMBoK7	1,00	0,70	1,00	0,40	1,00	0,50	0,75	0,00	1,00	1,00	0,30	1,00	0,70	0,60	0,50	1,00	0,75	0,75	0,75	0,75	0,25	1,00	0,50	0,50	0,75	0,75	0,75	0,50
PMBoK8	1,00	0,70	1,00	0,70	0,00	0,50	1,00	1,00	0,50	1,00	1,00	1,00	0,70	0,60	0,50	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,25	0,75	0,75	0,75	0,75	0,25
PMBoK9	1,00	0,70	1,00	0,70	1,00	0,80	1,00	0,00	0,50	1,00	0,00	1,00	0,70	1,00	1,00	1,00	1,00	0,75	1,00	1,00	0,50	1,00	0,75	0,50	1,00	0,75	1,00	0,50
PMBoK10	1,00	0,70	1,00	0,40	1,00	0,50	1,00	1,00	0,75	1,00	1,00	1,00	0,50	0,40	0,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,75	0,75	1,00	1,00	0,75	0,75
PMBoK11	1,00	0,70	1,00	0,70	0,00	0,50	0,75	1,00	0,50	1,00	0,30	1,00	0,50	0,60	0,75	1,00	0,75	0,25	1,00	0,50	1,00	1,00	0,50	0,50	1,00	0,75	0,75	0,50
PMBoK12	1,00	0,40	1,00	0,20	1,00	0,80	1,00	0,00	1,00	1,00	0,30	1,00	0,50	0,40	0,25	1,00	1,00	0,50	0,75	1,00	0,75	1,00	0,50	0,25	0,75	1,00	1,00	0,75
PMBoK13	1,00	0,70	1,00	0,40	1,00	0,50	0,75	0,00	0,75	1,00	0,30	1,00	0,50	0,40	0,50	1,00	1,00	1,00	1,00	1,00	0,75	0,75	0,50	0,75	1,00	0,75	0,75	0,50
PMBoK14	1,00	0,40	1,00	0,20	0,00	0,20	0,75	0,00	1,00	1,00	0,30	1,00	0,50	0,40	0,75	1,00	1,00	0,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
DUD-IVAC	4.00	0.70	4.00	0.70	1 00	0.00	0.75	4.00	0,75	4.00	4.00	4.00	0.50	0.40	0.50	4.00	4 00	4 00	4.00	4.00	4.00	4 00	0.50	0.50	4.00	4 00	0.50	Loop